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Abstract

With the accelerated aging of human society, Alzheimer’s disease (AD) is be-

coming one of the biggest threats to human health.  Since multiple pathogenetic

factors are implicated in the disease, the current hitting-one-target therapeutic

strategy has proved inefficient to AD.  As a result, finding multipotent agents that

aim at multiple targets is attracting more and more attention.  Although multifunc-

tional anti-AD agents can be created by incorporating two or more pharmacophores

in one scaffold, naturally occurring multipotent agents also attracted much

attention.  In this review, we first describe the functions of some typical naturally

originated multipotent anti-AD compounds, then summarize their structural fea-

tures and reveal that phenolics with certain flexibility predominate in these agents,

which are of significance to find novel multipotent drugs to combat AD and

other neurodegenerative diseases as well.
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Introduction

Since the discovery of Alzheimer’s disease (AD) in 1907,

considerable effort has been devoted to combating the

disease.  However, up to now, there is no effective thera-

peutics.  With the accelerated aging of human society, AD is

becoming one of the biggest threats to human health[1–3].

Although the etiology of AD is not very clear, multiple patho-

genetic factors have been identified for the disease, which

include amyloid-β (Aβ) peptide and/or τ protein aggregation,

excessive metal ions (eg, Cu2+, Zn2+, Fe3+), oxidative stress

and reduced acetylcholine (ACh) level, etc[1–8].  Besides, ge-

netic factors and lifestyles, such as diet, exercise and cognitive

stimulation, are also associated with AD development[9,10].

Despite the diverse pathogenetic factors involved in AD,

the current anti-AD strategy depends largely on single-tar-

geted drugs, especially acetylcholinesterase (AChE)

inhibitors.  As these drugs’ effects are quite limited[11], more

and more attention is given to fin d multiple-targeted agents

to hit more than one target implicated in AD[12,13].  Although

the new anti-AD strategy may be fulfilled by combining dif-

ferent anti-AD drugs in one pill (cocktail therapeutics)[14,15],

an alternative approach that aims at multiple AD-targets with

a single structure (termed multipotent agent) is also attractive,

because of its advantages in reducing risks of drug-drug

interactions and controlling pharmacokinetic behaviors[15].

Thanks to the continuing effort of medicinal chemists in

the past decade, many multipotent anti-AD agents have been

rationally designed by incorporating two or more pharma-

cophores in one scaffold, in which the pharmacophores for

inhibiting AChE were most widely used[12,13].  For instance,

Rosini et al[16] designed a hybrid compound (lipocrine) (Figure

1) by linking tacrine, an AChE inhibitor, and lipoic acid, a

universal antioxidant.  Rodríguez-Franco et al coupled tacrine

to melatonin, a pineal neurohormone and a preventive anti-

oxidant (Figure 1)[17].  These hybrid molecules exhibited mark-

edly enhanced activity with respect to AChE inhibition and

antioxidant properties compared with either of the original

molecules[16,17].  By joining together the pharmaco-phores

for inhibiting AChE and monoamine oxidases B (MAO-B),

ie, carbamate and propargyl group, Sterling et al[18] also ob-

tained novel dual inhibitors of AChE and MAO.

Despite the preliminary successes of synthetic hybrid

agents, the latent risks in safety and bioavailability is a big
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concern in their further development.  Thus, finding multipotent

natural agents to combat AD is attracting more and more

attention.

Multipotent anti-AD agents derived from foods

In the past few years, some epidemiological investigations

revealed that high consumption of some foods (or beverages)

were inversely associated with AD incidence[19–25].  These

foods include fruit and vegetable juices, green tea, wine,

Mediterranean diet, curry spice turmeric and even cigarettes,

all of which contain antioxidants, especially polyphenols.

As it is well known that polyphenols are excellent antioxi-

dants both as reactive oxygen species (ROS) scavengers and

transition metal chelators[26,27], the anti-AD effects of these

foods were naturally linked to their antioxidant potential.

Nevertheless, accumulating evidence indicates that the excel-

lent in vitro antioxidant activity of phenols can not necessar-

ily be translated into in vivo therapeutic effects[28,29].  Thus, it

is interesting to note that some antioxidants derived from

these foods go beyond modulating ROS.  Some representa-

tive examples are given as below.

Flavonoids  Flavonoids are the most extensively studied

polyphenols derived from fruit and vegetable juices and green

tea.  Multiple pharmacological effects have been identified

for flavonoids, many of which are beneficial to combat AD.

For instance, quercetin (Figure 2), the representative com-

Figure 1 .  Synthetic multipotent agents to combat Alzheimer’s

disease.

ponent of fruit and vegetable juices, can block Aβ- or τ-

aggregation (IC50s < 1 µmol/L)[30], inhibit monoamine oxidases

A and B (MAO A and MAO B) with IC50s of 0.01 µmol/L and

10.89 µmol/L, respectively[31,32].  In addition, quercetin can

efficiently inhibit butyrylcholinesterase (BChE) (with an IC50

of 1 µmol/L)[33], a recently recognized potential target for

treating AD[34].  As quercetin is highly bioavailable and can

pass through the blood-brain barrier (BBB)[35,36], it seems

partially responsible for the benefits of fruit and vegetable

juices to AD.

(-)-Epigallocatechin gallate (EGCG) (Figure 2) is the rep-

resentative component of green tea.  Some potential anti-

AD effects of EGCG have been identified as follows: i) it is

a powerful Aβ-aggregation inhibitor with an IC50 of 0.18

µmol/L[30]; ii) it attenuates Aβ generation through activating

α-secretase[37,38], inhibiting β-secretase (BACE1, with an IC50

of 1.6 µmol/L)[39] and reducing iron-regulated amyloid pre-

cursor protein expression[40]; iii) it inhibits MAO with an IC50

of 10 µmol/L[41].  All of these pharmacological effects are

helpful to understand the preventive effects of green tea to

AD.

Resveratrol  Resveratrol (Figure 2) is a famous phenolic

component extracted from red wine, which has been exten-

sively studied in the past 15 years.  Some pharmacological

effects that are associated with AD treatment have been

revealed.  First, resveratrol can lower the levels of secreted

and intracellular Aβ by promoting protease degradation of

the peptide[42].  Second, resveratrol inhibits monoamine oxi-

dase A (MAO-A) with an IC50 of 26.6 µmol/L[43].  Third,

resveratrol can inhibit cyclooxygenase-1 (COX-1) with an

IC50 of 24 µmol/L[44] and reduce cyclooxygenase-2 (COX-2)

at mRNA level[45].

Olive oil phenols  Mediterranean diet consists of olive

oil, fruits, vegetables and fish, of which olive oil is of special

interest and has been a research focus for decades.  Many

phenolic compounds have been identified from olive oil[46],

some of which exhibit nonsteroidal anti-inflammatory drug-

like activities that are beneficial to prevent AD.  For instance,

Beauchamp et al revealed that 25 µmol/L (-)-oleocanthal

(Figure 2) inhibited 56.1%±3.2% and 56.6%±9.5% COX-1

and COX-2 activity, respectively[47].  In addition, Bazoti et

al found that oleuropein (Figure 2) can form noncovalent

complex with Aβ peptide or its oxidized form[48].

Curcumin  Curcumin (Figure 2), a yellow-orange pig-

ment extracted from curry spice turmeric, has long been used

as a food additive in India.  Many pharmacological effects

have been identified for this pigment[49].  Besides its famous

transition metal-chelating ability and anti-inflammatory ac-

tivity[50–52], curcumin holds Aβ aggregation-blocking poten-



Http://www.chinaphar.com Ji HF et al

145

tial (with an IC50 of < 1 µmol/L)[30] and COX-1-, COX-2-inhibit-

ing activities (with IC50s of 18.8 µmol/L and 15.9± 7.9 µmol/L,

respectively).[53,54]

Nicotine  Nicotine (Figure 2) is the predominant compo-

nent of cigarette smoke, which is considered responsible for

the cigarettes’ benefits to AD.  Recently, Zhao and co-workers

revealed that nicotine attenuated the β-amyloid neurotoxicity

through regulating metal (copper and zinc) homeostasis[55] and

activating nicotinic acetylcholine receptors[56,57].  Combining

experimental findings and theoretical calculation results, we

indicated that the copper(II)-nicotine chelates hold SOD-

like activity, which may play a role in the neuroprotective

effects of nicotine[58].

Multipotent anti-AD agents derived from herbs

It is not surprising to note that in addition to foods, some

herbal medicines, such as G Biloba, Huperzia serrata, Salvia

officinalis, Melissa officinalis, also hold anti-AD potential,

as revealed by some preliminary clinical trials[59–64].  Some

ingredients responsible for the anti-AD effects have been

identified from these herbs.

Extract EGb761 (extract G biloba 761), prepared from the

leaves of G biloba and comprising flavonoids and terpene

lactones, was a hot spot of medicinal research in the past

two decades.  EGb761 has many pharmacological effects in

favor of the fight against AD, which include inhibiting Aβ

aggregation, attenuating apoptosis, preventing membrane

lipid from oxidation and resisting inflammation[65].

Huperzine A (HupA) (Figure 3), an alkaloid isolated from

Chinese herb Huperzia serrata, is also a potent multipotent

anti-AD agent, with activities of inhibiting AChE (with an

IC50 of 0.082 µmol/L)[60], mitigating oxidative stress, regulat-

ing the expression of apoptotic proteins Bcl-2, Bax, p53, and

caspase-3, interfering with amyloid precursor protein me-

tabolism and so on, which definitely benefits the neuro-pro-

tection[60,61].

Rosmarinic acid (Figure 3) is likely to be one of the major

active ingredients of Salvia officinalis and Melissa officinalis,

Figure 2.  Food-derived multipotent agents to combat Alzheimer’s disease.  Only the activities that go beyond modulating ROS and metals are

listed in parentheses.
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Figure 4.  Close-up views of binding modes of quercetin with MAO-A (A), MAO-B (B) and BChE (C) and superimposed quercetin structures in

conformations of binding with MAO-A (in yellow), MAO-B (in red) and BChE (in cyan) (D).  The hydrogen bonds are marked in green dotted lines.

Figure 3.  Herb-derived multipotent agents to combat Alzheimer’s

disease.
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which exhibits a combination of antioxidative, anti-Aβ ag-

gregation and antiapoptotic effects[66].

Recently, xanthones, a special kind of flavonoids that

spread widely in nature, were also found possessing high

anti-AD potential.  Indeed, some xanthone-containing herbs,

such as Polygala tenuifolia, show benefits to prevent AD[67].

A representative of multipotent anti-AD xanthone is pre-

sented in Figure 3.  It can inhibit MAO-A (with an IC50 of 0.04

µmol/L), MAO-B (with an IC50 of 33.0 µmol/L) and AChE (with

a Ki of 16.0 µmol/L)[68,69].  Because of the perfect conjugation

of the ring system and the electron-withdrawing property of

1,4-pyrone (the central ring)[70,71], xanthones are weaker elec-

tron donors than flavonoids[72], which implies that xanthones

are safer than flavonoids with respect to the prooxidant

potential.

Structural features of naturally occurring
multipotent anti-AD agents

From the structures of rational designed and naturally oc-

curring multipotent anti-AD agents, it can be found that both

kinds of compounds are different in scaffold, that is, the latter

shows a seamless framework (Figures 2 and 3), while the former

is composed of two or more isolated parts, linked by spacers

of different lengths, with each part aiming at a particular target

(Figure 1).  So, it is of significance to explore the natural strat-

egy of “designing” multipotent anti-AD agents.

Through examining the structures of above-mentioned

multipotent natural agents, we can find that most of them are

phenolics.  It is well known that phenolic hydroxyls are the

most potent groups to neutralize ROS through donating H-

atoms[73] and also effective to chelate transition metal ions[26].

However, the present description shows that natural phe-

nolics go beyond scavenging ROS or chelating transition

metals.  They can inhibit various enzyme’s activities and

prevent protein aggregation.  The major underlying reason

may be that phenolic hydroxyls are H-bond acceptors and

H-bond donors simultaneously, which facilitates the bind-

ing with protein targets.  This explanation is supported by a

meta-analysis on phenol-protein binding patterns which

revealed that more than 70% phenolic hydroxyls form inter-

molecular hydrogen bonds (IHBs) with targeted proteins[28].

Another feature of the naturally occurring multipotent anti-

AD agents is that their structures contain more than one

conjugated rings (most are phenolic rings) and most of the

conjugated systems are still flexible.  Thus, these molecules

reach a good balance between rigidity and flexibility, which

must benefit their binding with various targets.  To illustrate

the importance of these structural features in binding di-

verse target proteins, some multipotent agents were docked

with corresponding targets.  As shown in Figures 4–8, the

phenolic hydroxyls indeed tend to form IHBs with surround-

ing residues and the flexible structures favor the binding

between agents and proteins.  Finally, since p-stacking plays

an important role in protein amyloid formation[30,74], the aro-

maticity of phenolic ring is favorable to prohibit amyloid

fibril formation[75].

Figure 5.  Close-up views of binding modes of EGCG with BACE1 (A) and

MAO-B (B) and superimposed EGCG structures in conformations of bind-

ing with BACE1 (in yellow) and MAO-B (in red) (C).  The hydrogen bonds

are marked in green dotted lines.
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Conclusion

Thanks to the continuing efforts of medicinal chemists

and pharmacologists in the past decade, more and more natu-

Figure 6.  Close-up views of binding modes of resveratrol with MAO-A (A), COX-1 (B) and COX-2 (C) and superimposed resveratrol structures in

conformations of binding with MAO-A (in yellow), COX-1 (in red) and COX-2 (in cyan) (D).  The hydrogen bonds are marked in green dotted lines.

Figure 7.  Close-up views of binding modes of (-)-oleocanthal with COX-1 (A) and

COX-2 (B) and superimposed (-)-oleocanthal structures in conformations of bind-

ing with COX-1 (in yellow) and COX-2 (in red) (C).  The hydrogen bonds are marked

in green dotted lines.

ral agents that can hit multiple targets implicated in AD (eg,

Aβ, τ protein, AChE, BChE, MAO, COX, α-, and β-secretases,

ROS and transition metals) were identified.  As most of these

agents are bioavailable and can penetrate blood-brain bar-
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rier (BBB) (at least in animal models)[35,36,76–79], they are

likely responsible for the AD-preventing effects of the source

plants, as revealed by epidemiological investigations and

preliminary clinical trials.  Thus, these agents are good start-

ing points for finding novel anti-AD drugs.  Through exam-

ining the structures of these agents, it was revealed that

phenolics with certain flexibility are preferred by the natu-

rally occurring multipotent anti-AD agents, which has im-

portant implications for screening and design of novel

multipotent anti-AD drugs.

Considering the fact that current knowledge about natu-

ral products is very limited, we think that the presently iden-

tified natural multifunctional agents are the tip of the iceberg.

With the increase of information on natural medicines, more

and more pleiotropic anti-AD compounds will be discovered

from medicinal plants in China and/or other geographical

regions.

The present analysis also has significance to find drugs

for other neurodegenerative diseases, such as prion diseases,

Parkinson’s disease, and amyotrophic lateral sclerosis, be-

cause these diseases are also characterized by progressive

neuronal loss and involve similar multiple pathogenetic fac-

tors (eg, protein aggregation, transition metals and exces-

sive ROS)[5,6,76,80] and different types of soluble amyloid oli-

gomers bear a common structure[81].
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